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SUMMARY

In population-based casc-control studies, an attempt is made to identify all incident cases diagnosed in
a specified population during & fixed time interval. Assuming that this goal is met allows one to obtain
measures of risk other than relative risks. In this paper, we describe three approaches to estimate
exposure-specific incidence rates. Approach 1 relies on estimating crude incidence rates of the disease in
strata defined, for instance, by age and geographic area, and combining them with relative risk estimates
from the case-control data. In approaches 2 and 3, baseline incidence rates and relative risks are estimated
jointly. Approach 2 is based on a pseudo-likelihood, while, in approach 3, the problem is regarded as
a missing data problem and a full likelihood is maximized. We applied these three approaches to a study of
bladder cancer. Our three sets of estimates of exposure-specific incidence rates were in close agreement, while
there appeared to be greater precision with approaches 2 and 3.

I. INTRODUCTION

Case-control studies provide data on the distributions of exposure respectively in discased
subjects (cases) and non-diseased subjects (controls} for the disease under study. These data are
used to estimate relative risks through the estimation of odds ratios. In population-based
case-control studies, an effort is made to identify all incident cases diagnosed in a specified
population during a fixed time interval. In principle, then, other measures of risk can be
estimated, exploiting the counts of incident cases and of persons or person-years at risk for the
disease in strata or subsets of the population, defined perhaps by age, race, sex and geographic
area.

To be specific, crude incidence rates of the disease can be calculated in each stratum as the ratio
of the number of incident cases to the total number at risk. Further, by combining the crude
incidence rate and relative risk estimates, one can obtain, in each stratum, exposure-specific
cstimates of disease incidence rates, that is incidence rates for all exposure combinations, as has
been noted by Cornfield,!'> MacMahon,® Miettinen,* Neutra and Drolette,” Greenland® and
Gail er al.” However, methods of inference for the exposure-specific incidence rates have not been
fully developed, particularly in the muiltivariate setting.

In this paper, we present three approaches for estimating exposure-specific incidence rates from
population-based case-control studies. The results of application of these three approaches to
a population-based case-control study of bladder cancer® are compared. In Section 2, we describe
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this study. We then describe the three approaches in Section 3 and apply them to the bladder
cancer data ia Section 4, Section 5 provides a discussion.

2. THE NATIONAL BLADDER CANCER STUDY

The National Bladder Cancer Study was a population-based case-control study conducted at ten
cancer registries in the United States, nine of which were part of the Surveillance, Epidemiology
and End Results Program of the National Cancer Institute. All individuals aged 21-84 years with
a first histologically confirmed bladder cancer diagnosed during the year 1978 and reported to the
tumour registries were asked to be cases. Controls aged 21-84 vears were frequency-matched to
cases on geographic area, age (in five-year intervals) and sex. Approximately twice as many
controls as cases were selected except in New Jersey where the ratio was 3:2 and in Detroit where
it was only 1:1. Controls aged 21-64 years were selected from 22,633 households chosen by
telephone sampling with the use of random-digit dialing while controls aged 65-84 years were
selected from Health Care Financing Administration rosters.®

A total of 4086 eligible cases and 6985 controls were identified. Among them, respectively 2982
{73 per cent) cases and 5782 (83 per cent) controls were interviewed. Information on exposure to
several potentiai risk factors was gathered. They included cigarette smoking, occupational
exposure (to a list of substances including dye, rubber, leather, ink or paint}, history of urinary
tract infection, coffee drinking, tap water consumption and artificial sweeteners consumption. For
the purpose of this illustrative analysis, we will consider only the two maio risk factors, namely
cigarette smoking, classified into four levels: never smoked; ex-smoker; current light smoker
{ < 20 cigarettes/day); and current heavy smoker (= 20 cigareties/day), and occupational
exposure into two levels. An occupation was considered to be at high risk if any of the following
criteria was met:

1. on a list of suspected occupations based on the previous literature and with an observed
relative nisk in this study of > 1-3;

2. any occupation with a relative risk in this study of = 1'5; or

3. an occupation demonstrating a (significant) positive trend in risk in this study with
increasing number of years worked.®

Moreover, we only consider three out of the ten geographic areas, with low, moderate and high
crude incidence rates, respectively, the areas covered by the registries for Utah, Atlanta, and New
Jersey. We will consider nine strata defined by geographic area and age group {21-44 years,
45-64 years, 65+ years). Only white men, the largest race-sex group, are included in our analyses.

Because the study was population-based, the cases could be linked to the population from
which they came. The distribution of age, sex and race in each area in the year 1978 was
extrapolated from U.S. Census data for the years 1970 and 1980, and provided by the SEER
Program.!® These counts provide a close approximation to the number of person-years in each
age-area stratum since the cases were diagnosed during a one-year interval and the population
could be considered to be stable during that time period. Therefore, the crude incidence
rates could be calculated from a full census of incident cases and the number of person-years
in each stratum defined by age and geographic area, Table I presents the number of cases and
controls for whom we had information on exposure as well as the total number of incident cases
and subjects at risk during 1978 for each stratum. Note that in the rest of the paper, we will use the
termm cases (and controls) for diseased (and non-diseased} persons with information on
exposure.
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Table I. Bladder cancer data (white males)

Population Number of 1978 Number of cases Number of controls
in 1978 incident cases with information with information
on exposure on exposure
Utah
age (years)
21-44 238,184 9 9 24
45-64 97,420 32 23 83
65+ 40,236 70 48 91
Atlanta
age (years)
21-44 247,185 9 7 8
45-64 110,095 53 33 66
65+ 31,662 71 28 68
New Jersey
age (vears)
21-44 300,515 39 28 62
45-64 216,789 309 246 510
65+ 91,579 531 336 607
Total 1,373,665 1123 758 1519

3. THE THREE APPROACHES FOR ESTIMATING EXPOSURE-SPECIFIC
INCIDENCE RATES

We now describe three approaches for ecstimating exposure-specific incidence rates in
population-based case-control studies such as the National Bladder Cancer Study. These
approaches are presented in a general fashion but specifics for the bladder cancer data are pointed
out when necessary. First, we describe the basic models involved for the three approaches.

3.1. Models

Let X denote the exposure factors influencing the probability of occurrence of the disease under
study and S the stratification factors. We restrict ourselves to X and S being categorical variables,
respectively indexed by i (i=1,2,...,I) and j (j= 1,2, ...,J). Summation over an index
(excluding value 0) is indicated by dot notation. In our analysis of the bladder cancer data,
X represents cigarette smoking and occupational exposure, and § represents geographic area and
age. Therefore, there are eight levels of combined cigarette smoking and occupation exposure
{I = 8) and nine strata defined by geographic area and age (J = 9).

The target population of the case-control study is considered to be followed for a set time
period for the occurrence of bladder cancer. As in cohort studies that model incidence rates with
complete data on exposure,!! we can assume that the number of observed incident cases d;; in
joint level i x j of X x § has a Poisson distribution with mean h;;t;;, where t;; and h;; are, respectively,
the follow-up time on study and the disease rate in joint level i xj of X x §. In our example, the
t;; are unknown quantities, since the number of individuals at each ievel of X in the jth stratum
is unknown, but each ¢ j, the follow-up time for the jth stratum, is assumed known, and set equal
to the census counts of individuals in the stratum. We used 1978 counts since 1978 was the year
of diagnosis for all the cases. Inevitably, the value of X will not be known for all identified
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cases (due to refusal to participate or death}, but typically § will be known even for these cases.

Instead of using the Poisson model, we can assume that the d, ; are binomial with mean
parameters p;; and total individuals ¢;;. Then, the p;; represent the risk of disease during follow-up.
For our bladder cancer example, where the disease rate is low for all joint levels of i and j and
follow-up is for at most one year, the Poisson and binomial models are approximately equivalent
and the choice between them is a matter of convenience. The three approaches could be
implemented only with the binomial assumption or, alternatively, only with the Poisson
assumption (except for the case-control part of approach 1, see below).

For approaches 1 and 2, we assume that the disease rate h;; is given by the multiplicative
Poisson model:

hij = hljRij’

where A, ; is the baseline disease rate for level j of S and R;; is the relative risk for joint level i xj of
X x§ compared to joint level 1 xj of X x§. Note that since R is indexed by both i and j, the
proportional hazard assumption need not be made, though it is made below in our analyses of the
bladder cancer data. Also note that the Poisson assumption yields the same likelihood as is obtained
by assuming that time to disease has piecewise constant hazard within all levels of X and §.2%1?

For approach 3 and the casc-control part of approach 1, we assume that the probability of
disease p;; in joint level i xj of X x § follows a logistic model,

logitp;; = a; + X, f, )

where X, is the vector of exposure variables for level i and § is the corresponding vector of
parameters. Additional terms for exposure by stratum interactions could be added to the model,
but this was not done in our analysis of the bladder cancer data.

For all three approaches we must assume that we have full case identification and that X is
missing at random (MAR)'# in order to estimate exposure-specific incidence rates. MAR requires
that the distribution of X be the same for controls and other non-diseased individuals in the
population, and the same for diseased individuals with known and unknown X, conditional on
variables available for everyone, such as disease status, age and geographic area. Thus, the fact
that interviewing response rates vary by age, geographic area and disease status? does not imply
violation of MAR assumption.

3.2, Approach 1

This approach relies on earlier work by Miettinen* and multivariate extensions by Gail et al.” for
a case-control study based on a cohort. It involves estimating crude incidence rates for each
stratum and then obtaining baseline incidence rates (that is, incidence rates at the baseline level of
exposure) by combining crude incidence rates estimates and attributable risk estimates. It was
developed in the context of a cohort followed-up for a given time period in order to diagnose
incident cases of the disease under study. Our argument above suggests that the approach of Gail
et al.” can be readily applied here. It is outlined below.

Given that information on X is only available for the case-control data, baseline incidence rates
hy; cannot be estimated directly. However, the crude incidence rates h¥ for a given level j of
§ (stratum j) can be estimated by d ;/t ;, where d ; and ¢ ; are, respectively, the number of incident
cases and follow-up time in level j of §. These two quantities can usually be obtained for
a population-based case-control study. In our example, ¢ ; is the population in level j of § in 1978.
The crude and baseline rates are related through:*”’

hlj = hj‘(]. - ARJ),
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where AR; is the attributable risk in stratum j. Using results from Bruzzi et al.'® on attributable
risk, Gail et al.” obtained:
hiy=ht ¥ puRy',
i=1,1
where the summation is taken over all levels of X and p;; is the proportion of cases at level j of
S who are at level i of X. The quantities p;; can be estimated from the cases. The relative risks

R;; can be estimated by odds ratios from the case-control data. Upon fitting a logistic model with
a px 1 vector of parameters 6, one obtains the baseline incidence estimates:

g=dyt) Y (nij/".j)Rt}l(é),
i=1,f
where ny; is the number of cases with joint level i xj of X x 5, n ; is the total number of cases in
level j of §, and § is the MLE of 6. If all incident cases in the populatmn are used as cases for the

case-control study, then n;; = d;;,n ; = d ;, and the previous estimate simplifies to:

b=/t ¥, nini;l(é)~
i=1.1
Finally, the estimate of incidence rates for level i of exposure (i = 2, ... ,J) and stratum j are given
by:

73”' = ;‘lljRij(é).

We have derived variance estimators elsewhere.’® We present an outline here. All incidence
rate estimates fi; ; are functions of a finite number of parameters, namely the baseline incidence
rates b, ; ;» and the parameter estimates § from logistic regression. In order to estimate the variance
of by ;» one needs to estimate the covariance matrix L of parameter estimates h 1; and 6, and then
apply the delta-method.!”

The covariance matrix T involves the following submatrices: the J x J covariance matrix
Zy, »,0f baseline disease incidence rate estimates, the J x p covariance matrix X 3 of baseline
disease incidence rate estimates with logistic parameter estimates, and the p x p covariance matrix
%54 of parameter estimates §. The matrix ¥;; can be estimated from the observed information
matrix from the logistic model. However, the other two matrices are complex to estimate because
the baseline incidence estimates are obtained by combining data from two sources, namely the
case-control data and the population data. Details were worked out by Benichou and Gail.'®
They invelve noting that the logistic score equations define implicit relationships between
parameter estimates 0 and quamxtleq n;; defined above, and then applying a delta-method for
implicitly defined random variables.'®

3.3. Approach 2

The second approach relies on a pseudo-likelihood approach. If information on exposure were
available for everybody in the population rather than just for the cases and controls, one could
write a full likelihood for the entire population. With the Poisson assumption, defined above for
disease rates h;;, the log-likelihood would be:
Y, % [dijlog {hi(&)} — hy(&)us].
i=1.0j=1,7

where quantities d;; and t,; are as defined previously and the g x 1 vector ¢ consists of baseline
incidence rates and relative risk parameters.
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However, only the quantities d; and ¢ are observed, not the individual ¢;; and d,;. This
approach relies on estimating these latter quantities from the observed distributions of X in the
cases and controls, respectively. If one denotes disease status by D (0 for non-diseased and 1 for
diseased), the estimated quantities J,-,- =d; IS(X =x|S=s5,D=Nand f;; = t.,-Is(X = X;|8 = s,
D = 0) can be substituted into the Poisson likelihcod to obtain a pseudo-likelihood whose
logarithm is:

T= ¥ % [dlog{h®)} ~ k(8]
i=1.0=1,4
Maximum pseudo-likelihood estimates of £, that is of the baseline incidence rates and relative risk
parameters, can thus be obtained. Using these pseude-likelihood estimates, one can obtain
estimates of exposure-specific incidence rates h;;. Note that, strictly speaking, one should use
P(X = x;|8 = s;) instead of P(X = x;|8 = 5;,D = 0) to obtain ¥;, but, for an event as rare as
bladder cancer in one year, the two are equivalent.

In this approach, baseline incidence rates and relative risks are jointly estimated using all the
data. In approach 1, on the other hand, relative risks are estimated from the case-control data,
and baseline incidence rates are estimated by combining crude incidence rates estimates obtained
from the population data and attributable risks estimates obtained separately from the
case-control data. This points to a potential gain in efficiency with approach 2.

The additional component of variability in the estimates of ¢ due to using estimates for d;; and
t;; can be taken into account through a ‘sandwich’ variance estimator. For this problem, the
estimating equations are defined by the pseudo-likelihood score equations:

517651 = z Z [JijalOghu(@/afl — £;0hi (£} 081,
i=1,1j=1.J

forl = 1,...,q. These q score equations are unbiased estimating equations provided d; jand T ;are
unbiased estimates of quantities d;; and t;;, that is, provided that X is missing at random. If one
denotes each of these g equations by E(&)), the vector of all ¢ estimating equations by E, its g x g
variance matrix by var (E), and the g x g matrix of derivatives of score equations with respect to
the g x 1 vector ¢ by 0E/d¢, then the sandwich variance estimator for £, the pseudo-likelihood
estimate of £, is given by Liang and Zeger:'®

var(¥) = (0E/0&)~ ! var(E){OE/d8) L.

In E, only the quantities d;; and t;; are random. The g x g matrix var(E) can be estimated by using
the delta-method and considering the independent multinomial distributions of X for each level
j of § among the controls and from the independent Poisson distributions of d;; for each level i of
X and jof S.

3.4, Approach 3

Approach 3 differs from approach 2 in the way quantities ;; and d;; are estimated. In approach 2,
only the observed distribution of X among the controls and cases are used to estimated quantities
t;; and d,;, respectively. In approach 3, the problem is regarded as a missing data problem and the
estimates of t;; and d;; depend on the cstimates of relative risk. The EM algorithm!#2® can be
used to estimate MLE’s of &

Alternatively, Newton-Raphson methods can be used to obtain a maximum likelihood
estimate of the parameters of interest. Newton—-Raphson converges much more quickly but
requires analytic first and second derivatives of the log- likelihood | defined below. While this
approach could also be based on the Poisson assumption defined above for disease rates h;;,
a binomial assumption was made for reasons of convenience. We nced a little more notation.
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Denote ny; = d ; — n;as the number of incident cases with level j of S(S = s;) but unknown X;m;;
as the number of non-diseased persons with level i of X(X = x;)and S =s;mg; =t ; —d;—m;
as the (typically large) number of non-diseased subjects with § = s; but unknown z and gi; as
Pr(X = x;|S = s;) in the population. The complete log-likelihood [ is the sum z, W4 oof
stratum-specific log-likelihood [;, where

L= }: n;;log(p:;) + 2,, m;;log(l — pi;) + Z (ni; + mij)log(qiy)

i=1 i= i=1

] 1
+ n01108< Z Pij‘hj) + m()leg( Z (- Pij]qij)-
i=1 i=1

In [, the first two terms are the contributions of the cases and controls about p;;, and hence the
baseline rate and relative risk parameters; the third term is the contribution of the cases and
controls about ¢;; and the fourth and fifth terms are the contributions of the diseased and
non-diseased subjects with no information about i to the probability of disease. Note that
S .pi;di; is the average of the i-specific probabilities of the disease in stratum j, with weights
equal to the frequency of level i. Estimates of the variances of the parameter estimates are
obtained using the inverse of the observed information at the maximum likelihood estimate.

For this analysis, we estimated (I — 1) separate values of g;; for each j, constrained so that
S i-:q;;= 1. In our data set there were three values of i, j such that n;; + my; = 0; we assum&d
q;; = 0 for these i,j. Otherwise, we reparameterized the g's as 6;; = log(¢;/¢4y;) for i = 2, .

Approach 3 is more difficult to implement than the others because of the complexity of the
likelihood and the large number of nuisance parameters (({ — 1)xJ ~ 3 in this example).
However, if we restrict our attention to the logistic model, a simplified version of approach 3 can
be implemented without the need to estimate nuisance parameters. This is analogous to method
(c) in Greenland.® A prospective logistic model (equation (1)) fitted to the case-control data yields
maximum-likelihood estimates of the relative risk parameters §. Maximum-likelihood estimates
of baseline incidence rates are obtained by adding to the stratum parameter estimates &; a term
corresponding to the logarithm of the ratio of sampling fractions among controls and cases in

stratum j, that is, the quantity a;=log[{m ;/(t;—dj)}/{n;/d ;}]*' They are given by
hy; = {1 + exp( — &; — a;)} *. The covariance matrix of estimates of baschm mudence rates and
relative risks can then be obtained as described in Section 4 of Prentice and Pyke.*!

As with approach 2, baseline incidence rates and relative risks are jointly estimated with
approach 3, suggesting a potential gain in efficiency relative to approach 1. Further, approach
3 has the advantage of yielding fully efficient maximum likelihood estimates rather than
maximum pseudo-likelihood estimates of parameters ¢ as approach 2 does.

4. RESULTS

The same form of the model was fit whether maximizing the logistic likelihood in approach 1, the
Poisson pseudo-likelihood in approach 2 or the likelihood in approach 3. We estimated 13
parameters for the stratification and exposure variables. We used nine parameters to fit the main
effects and interactions of the stratification variables (equation (1)), namely age and geographic
area (both in three categories). We used three and one parameters, respectively, to fit the main
effects of the exposure variables, smoking (in four categories) and occupational exposure (in
two categories). We did not include interaction terms between stratification and exposure
variables, or between exposure variables. In particular, since we did not include age x exposure
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Table TI. Estimates of bladder cancer crude and baseline incidence rates in nine strata

Estimates of crude Estimates of baseline
incidence rates per 10° incidence rates per 10°
person years (SDs in parentheses) person years (SDs in parentheses)

Approach 1 Approach 2 Approach 3

Utsh

age (years) 21--44 38 (1-3) 22 (0-8) 1-6 {0-6) 17 (0-6)
45-64 32-8 (5-8) 151 (3:3) 137 (3.0) 139 (3-0)
65+ 1740 (20-7) 91-6{13.6) 88-4 (14-6) 89-0 (140

Atlanta

age (years) 21-44 36 (1-2) 1-2 (04) 1-5 (06) 14 (0-5)
45-64 481 (6:6) 19-5 (3-2) 184 (34) i8-8 (35
654 224-2 (26:6) 95-8{13-7) 1027 (17-0) 101-2(17-1)

New Jersey

age (years) 21-44 136 (2:1) 58 (1-2) 54 (1-1) 55 (1I-D
45--64 1425 (81) 559 (44) 61-5 (7-4) 59-2 (73)
65+ 579-8 (25-2) 2857 (18:7) 2763 (31-1) 2819 (31-4)

interaction, we assumed proportional hazards for the effect of smoking and occupational
exposure. In approach 3, there were 60 additional nuisance parameters (see Section 3.4).

Table II gives estimates of crude and baseline incidence rates of bladder cancer. They increase
sharply with age. As stated before, crude rates are the highest in New Jersey and the lowest in
Utah. By multiplying crude rate estimates by the term 1 - AR ;» we obtained estimates of baseline
incidence rates (approach 1), Attributable risks were higher in Atlanta (between 0-57 and 067)
than in Utah (between 0-42 and 0-54). As a result, bascline incidence rates were nearly equal in
these two areas. Estimates of baseline incidence rates with approach 2 were obtained directly by
maximizing the Poisson pseudo-likelihood and with approach 3 by maximizing the binomial
likelihood. The estimates from the three approaches agree closely. Estimates of standard devi-
ations also agree closely except for two strata (45-64 and 65+ years) in New Jersey with the
highest numbers of incident cases, for which standard deviations are markedly smaller with
approach 1 than with approaches 2 and 3.

Estimates of relative risks for smoking and occupational exposure are given in Table IIl. Point
estimates and their standard deviations are nearly identical for all three approaches. Note that
relative risk estimates from approaches 1 and 3 are maximum likelihood estimates. With
approach 2, the observed information matrix ( — JE/3¢)™ ! gives variance estimates that would
be correct if the terms ¢;; and d;; were observed rather than estimated, that is if exposure were
observed for all individuals in the population. It is interesting to note that the ratios of the correct
sandwich variance estimates for the four relative risk parameters, to those obtained from
(— OE/8E)~ 1 fall between 042 and 0-48, close to the value (-45 obtained from the usual refative
efficicncy formula k/(k + 1) x =, given by Ury,?? where k is the ratio of the number of controls to
cases (k = 2-0 in the study) and = is the proportion of cases with information on exposure
{r = 0.67 in the study) (seec Table I).

Table IV gives estimates of exposure-specific incidence rates for current light smokers ( < 20
cigarettes/day) with no occupational exposure and for individuals who are both current heavy
smokers ( = 20 cigarettes/day) and occupationally exposed. Again, incidence rates estimated by
all three approaches agree very closely in all strata. However, there is a gain in efficiency with
approaches 2 and 3 since for all straia except stratum 4 (Atlanta, 21-44 years) approaches 2 and
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Table 1[I Estimates of relative risks for smoking and occupational exposure (SDs in parentheses)

Approach 1 Approach 2 Approach 3

Smoking
ex-smoker 0330 (0-125) 0-365((r126) 0-330{0-125)
carrent light smoker ( < 20 cigs/day) 0-633 (0-202) 0-622 (0-207) 0-633 (0-202)
current heavy smoker ( = 20 cigs/day} 1-082 (0-127) 1-075 (0-128) 1-082 (0:127)
QOccupational exposure 0-449 (0-096) 0-430 (0-099) 0-449 (0-096)

Table V. Estimates of bladder cancer exposure-specific incidence rates per 10° person years for two levels
of exposure and in nine strata (SDs in parentheses)

Current light smokers Current heavy smokers
{ < 20 cigs/day) not ( = 20 cigs/day)
occupationally exposed occupationally exposed

Approach 1 Approach 2 Approach 3 Approach 1 Approach 2 Approach 3

Utah

age (years) 21-44 41 (L7 29 (1-2) 32 (13 160 (39) 71 (25} 80 (2:8)
45-64 284 (82) 256 (69) 261 (69) 698 (175) 619 (12:0) 641 (124)
65+ 172:6 (43-0) 1647 (40-6) 1674 (381) 423-5 (84:5) 3985 (62-1y 4099 (61-7)

Atlanta
age (years) 21-44 22 (09 29 (i-3) 27 (1) 54 (2:0) 69 (27) 66 (24)
45-64 367 (94) 343 (86) 355 (86) 900 (194) 830 (131) 869 {13-6)

65+ 1803 (44'9) 1912 (43-1) 190:5(41:7) 442:6 (90:0) 462:6 (722) 466:1 (69-2)

New Jersey ,

age (years) 21-44 110 (31) 101 (27) 104 (26) 270 (65 245 (45 254 (46
45-64 1053 (226) 1144 (221) 111:5{21:0) 2584 (42:0) 2769 (260} 2731 (239)
65+ 538:0(111-3) 5144 (100:0) 530:0(99-3) 13203 (204-7) 12450(116:0) 1289-8(117-9)

3 yield standard deviation estimates smaller than those obtained from approach 1. Relative to
approach 1, the standard deviation estimates are between 2 per cent and 29 per cent (respectively,
7 per cent and 24 per cent} smaller with approach 2 (respectively, approach 3) for current light
smokers in all strata but stratum 4 and between 20 per cent and 43 per cent (respectively, 22 per
cent and 43 per cent) smaller in individuals who are current heavy smokers and occupationally
exposed in the same eight strata. This is similarly observed for all levels of exposure other than the
baseline and is due to the negative correlations between baseline incidence rates and relative risk
estimates. With approach 1, these correlations only come from part of bascline rate estimates,
namely the term 1 — AR ;» while with approaches 2 and 3, baseline rates and relative risks are
estimated jointly and are thus more strongly correlated. On these data, approaches 2 and 3 are
about equally efficient.

5. DISCUSSION

The ability to make inference about exposure-specific incidence rates is an advantage of
population-based case-control studies?® that has been long recognized,! ? but not fully exploited
in the multivariate setting until recently.” Accurate estimates of exposure-specific incidence rates
depend on having a complete and accurate census of the cases. The three approaches to analysis
presented here offer a choice of methods that can be used in a multivariate setting, Approaches
2 and 3 are closely related to work by Scott and Wild** and Wild?® on fitting prospective
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regression models for case-control studies. Those papers, however, concentrated on estimation of
relative risk.

All three approaches require the assumption that data be missing at random. Violation of this
assumption will have consequences for our approaches. They also affect estimation of relative risk
parameters in standard case-control studies. The fact that interviewing response rates vary by
disease status, age and geographic area, does not imply the missing at random assumption is
violated.

The bladder cancer exposure-incidence rates that we obtained with the three approaches agree
very closely. Approaches 2 and 3 appear to be more efficient. These approaches rely more heavily
on the relative risk model than approach 1. Therefore, these approaches may be more sensitive to
model misspecification than approach 1, but less variable than approach 1 when the model is
correct. Further numerical work and simulations are needed to investigate this supposition.
Simulations are also needed to confirm the findings on efficiency in this paper. In particular, it is
necessary to confirm that our variance estimators accurately reflect sample variance.

An advantage of approaches 2 and 3 is that they can be applied to more general models of risk.
For instance, it would be possible to assume an additive form:

hyy=hy;+ Dy,

where D;; is the difference between incidence rates at levels i and 1 of X in stratum j. An advantage
of approach 1 is that it can be applied to data with individual matching of the controls to the
cases, as well as with controls selected by frequency matching as assumed in this paper. Another
advantage of approach 1 is that if external crude rates are available, it can be applied to
case-control studies that are not population-based.

From estimates of exposure-specific incidence rates, one can estimate the probability that an
individual at a given level of exposure will develop disease over a specified age interval. Such
probabilitics have been called ‘absolute risks’” and have been used to assist in medical
counselling” and to plan prevention trials to assess interventions.?®

One purpose of the National Bladder Cancer Study was to see whether risk factors might
explain extreme geographic differences in age-adjusted bladder cancer rates. Because controls
were frequency matched on geographic area, routine methods for estimating the effect of area do
not apply. Our methods, however, can be used. In the oldest age group, the crude incidence rates
per 100,000 person years are 174,224 and 578 (Table II) for white males in Utah, Atlanta and New
Jersey, respectively. After adjustment, the bascline rates are estimated as 92, 96 and 286 (Table II),
suggesting that the difference between Utah and Atlanta might be explained by the two risk
factors discussed here, namely smoking and occupational exposure, but that the rate in New
Jersey is still far higher than in the other two areas.

The analyses presented here are preliminary and are presented only as an example of
application of the methods we have developed. We ignored many exposure factors, did not adjust
finely for age, smoking, or occupational exposure, and only considered white males in three of ten
available areas. We are planning a more complete analysis of the National Bladder Cancer Study
in order to obtain more extensive exposure-specific incidence rates based on all exposure factors
described in Section 2 for all 10 geographic areas and all race-sex groups.
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